Tsunami Research and Its Practical Use for Hazard Mitigation

Hiroo Kanamori Seismological Laboratory, California Institute of Technology

Cause of Tsunami

Earthquakes Landslides Volcanic origin Impact

(Dr. Gerald Fryer, PTWC)

Earthquakes are the most common origin.

Figure 6 Distribution of tsunami occurrences throughout the world. Symbols represent the historical events with intensity \geq 2 and validity \geq 3 from the NOAA NGDC Tsunami Database. (K. Satake, 2015)

Science and technical matters

Earthquakes and Seismology

Most common and Traditional → Science and Technology, Extensively used.

Global monitoring, also promotes science

For monitoring, "Real-time availability is important"

Other networks

e.g., Japan China etc

More than 1000.

Use of close-in stations for rapid retrieval of source parameters Rivera, Duputel, and others

Chilean Rapid Warning: The 2015 Illapel earthquake (Mw=8.3)

http://www.ipgp.fr/en/earthquake-offshore-illapel-chile

Evolution of reporting speed

Data provided by E. Hauksson and M. Hoshiba

Ocean-bottom pressure gauge

Measures tsunami more directly, but it must be "there".

GPS, Pressure gauge, Cable system

More accurate, detailed but time-wise, limit=a few minutes?

Tsunamis of landslides, volcanic, impact origin

Science has advanced but Technology for warning must be developed.

Difficulty

Most natural processes, especially earthquakes Stochastic or Chaotic, because of "many" factors involved. Prediction on a time scale of our daily life is difficult.

Rare, but with grave consequences. Near-field tsunamis (e.g., 2018 Sulawesi) require very rapid (< a few minutes) response and evacuation

We need to prepare for the unexpected.

A comprehensive program including science, technology, vulnerability, infrastructure, land-use planning, education, evacuation drills, etc is necessary.

Long-term preparedness with long-term stable funding (sustainability) is important.

Tsunami Hazard Mitigation Program Not just a matter of science and technology

Input: Science \rightarrow Government Example, US. Congress: request \rightarrow NAS \rightarrow Report

An Assessment of the U.S. Tsunami Program and the Nation's Preparedness Efforts

On

Assessment of Tsunami Risk Preparedness, Education Detection and Forecast Improve TWC's Reliability and Sustainability of Operations

Issues:

 For large "regular" earthquakes (2004 Sumatra, 2011 Tohoku) a few minutes Improve the traditional method for warning. (seismic, GPS, Ocean cable system)

- 2. For tsunamis of landslides, volcanic origin, Further development is required.
- For "near-field" earthquake (1993 Okushiri, 2018 Sulawesi)) less than a few minutes, Self-evacuation (seismic shaking) may be the only way. Deal with frequent false alarms
- 4. For slow (tsunami) earthquakes (1896 Sanriku, 1992 Nicaragua) Self evacuation may not work (no shaking)
- 5. How to handle property loss? Insurance?

Some examples

Land-use planning Infrastructure Vulnerability Education (signs etc) Special studies Vertical evacuation structure

Land-use management

Yoshihama, Iwate Pref. (Photo. Oct. 2010 Luis Rivera) 1896 tsunami Almost the entire village was wiped out.Advised to live on higher grounds.2011 Tohoku-Oki tsunami No casualty

Tsunami Wall (15.5 m) protected the village of Otanabe behind it

Otanabe photo taken by Y. Nakamura (4/11/2011)

Vertical Evacuation

日本の協力により建てられた避難タ ワー。普段はコミュニティ活動に利用さ れている。 (バンダ・アチェ市)

(From Cedillos et al., 2010)

(From JICA publication)

Conclusion

1. Science and Technology

Seismology, GPS, Ocean-bottom instrumentation, and Telemetry steadily advancing, and being effectively used for warning.

2. Difficulty (unique)

Rare and unexpected events with grave consequences Especially serious for near-field tsunamis

3. Sustainability: Long-term funding. Use of monitoring network for science. e.g., Global network for seismology, DART for tsunami research

4. Vulnerability study, Land-use planning, Evacuation strategy, Education and Drills

5. Close collaboration between scientists, engineers, practitioners, and government officials Review and recommendation